406 research outputs found

    Speaker-following Video Subtitles

    Full text link
    We propose a new method for improving the presentation of subtitles in video (e.g. TV and movies). With conventional subtitles, the viewer has to constantly look away from the main viewing area to read the subtitles at the bottom of the screen, which disrupts the viewing experience and causes unnecessary eyestrain. Our method places on-screen subtitles next to the respective speakers to allow the viewer to follow the visual content while simultaneously reading the subtitles. We use novel identification algorithms to detect the speakers based on audio and visual information. Then the placement of the subtitles is determined using global optimization. A comprehensive usability study indicated that our subtitle placement method outperformed both conventional fixed-position subtitling and another previous dynamic subtitling method in terms of enhancing the overall viewing experience and reducing eyestrain

    Theoretical Analysis and Implementation of Photovoltaic Fault Diagnosis

    Get PDF
    The utilization of solar energy by photovoltaics (PVs) is seen in increase across the world since the technologies are getting mature and the material costs are being driven down. However, their operating costs are still very high, owing to their vulnerability to harsh outdoor environments they are working. Currently, the reliability of PV systems is the bottle-neck issue and is becoming a heated research topic. This chapter presents the state-of-the-art technologies for photovoltaic fault diagnosis, based on an intensive literature review and theoretical analysis. The chapter evaluates the fault mechanisms of photovoltaics at the cell, module, string and array levels. Analytical models are developed to understand the PV’s terminal characteristics for diagnostic purposes. Offline and online fault diagnosis technologies are reviewed and compared based on the use of electrical sensors and thermal cameras. The aim of this chapter is to illustrate the PV faulty characteristics, to develop offline and online fault diagnosis, and to use the fault diagnosis information to achieve optimal operation (maximum power point tracking) under various PV faulty conditions, by using multi-disciplinary analytical, empirical and experimental methods

    Deep Multimodal Speaker Naming

    Full text link
    Automatic speaker naming is the problem of localizing as well as identifying each speaking character in a TV/movie/live show video. This is a challenging problem mainly attributes to its multimodal nature, namely face cue alone is insufficient to achieve good performance. Previous multimodal approaches to this problem usually process the data of different modalities individually and merge them using handcrafted heuristics. Such approaches work well for simple scenes, but fail to achieve high performance for speakers with large appearance variations. In this paper, we propose a novel convolutional neural networks (CNN) based learning framework to automatically learn the fusion function of both face and audio cues. We show that without using face tracking, facial landmark localization or subtitle/transcript, our system with robust multimodal feature extraction is able to achieve state-of-the-art speaker naming performance evaluated on two diverse TV series. The dataset and implementation of our algorithm are publicly available online

    Transition metal oxides for high performance sodium ion battery anodes

    Get PDF
    Sodium-ion batteries (SIBs) are attracting considerable attention with expectation of replacing lithium-ion batteries (LIBs) in large-scale energy storage systems (ESSs). To explore high performance anode materials for SIBs is highly desired subject to the current anode research mainly limited to carbonaceous materials. In this study, a series of transition metal oxides (TMOs) is successfully demonstrated as anodes for SIBs for the first time. The sodium uptake/extract is confirmed in the way of reversible conversion reaction. The pseudocapacitance-type behavior is also observed in the contribution of sodium capacity. For Fe2O3anode, a reversible capacity of 386 mAh g-1at 100 mA g-1 is achieved over 200 cycles; as high as 233 mAhg-1is sustained even cycling at a large current-density of 5 A g-1

    Fault Diagnosis of Switched Reluctance Motors in Electrified Vehicle Applications

    Get PDF
    Electric vehicles (EVs) and hybrid electric vehicles (HEVs) can reduce greenhouse gas emissions while switched reluctance motors (SRMs) are one promising motor technology for EVs. This chapter illustrates the fault diagnosis and fault tolerance operation of SRM-based EVs/HEVs, where high reliability is a vital factor involving human lives. Based on the traditional asymmetric half-bridge topology for SRM drives, the characteristics of switching devices upon open-circuit and short-circuit are analyzed, and the corresponding fault diagnosis methods are developed. In order to achieve fault tolerance operation, the central point of SRM stator winding is tapped to form a modular half-bridge configuration to provide fault diagnosis and fault tolerance functions. The fault diagnosis functions are set idle in normal conditions. Simulation results in Matlab/Simulink and experimental results on a 150-W four-phase 8/6 SRM are used to validate the fault identification, and on a 750-W, three-phase 12/8 SRM are used to validate the fault tolerance operation of the proposed strategy, which may have significant implications for EV/HEV applications

    New SR drive with integrated charging capacity for plug-in hybrid electric vehicles (PHEVs)

    Get PDF
    Plug-in hybrid electric vehicles (PHEVs) provide much promise in reducing greenhouse gas emissions and, thus, are a focal point of research and development. Existing on-board charging capacity is effective but requires the use of several power conversion devices and power converters, which reduce reliability and cost efficiency. This paper presents a novel three-phase switched reluctance (SR) motor drive with integrated charging functions (including internal combustion engine and grid charging). The electrical energy flow within the drivetrain is controlled by a power electronic converter with less power switching devices and magnetic devices. It allows the desired energy conversion between the engine generator, the battery, and the SR motor under different operation modes. Battery-charging techniques are developed to operate under both motor-driving mode and standstill-charging mode. During the magnetization mode, the machine's phase windings are energized by the dc-link voltage. The power converter and the machine phase windings are controlled with a three-phase relay to enable the use of the ac-dc rectifier. The power converter can work as a buck-boost-type or a buck-type dc-dc converter for charging the battery. Simulation results in MATLAB/Simulink and experiments on a 3-kW SR motor validate the effectiveness of the proposed technologies, which may have significant economic implications and improve the PHEVs' market acceptance

    Design and Assessment of an Electric Vehicle Powertrain Model Based on Real-World Driving and Charging Cycles

    Get PDF
    In this paper, an advanced analytical model for an electric vehicle (EV) powertrain has been developed to illustrate the vehicular dynamics by combining electrical and mechanical models in the analysis. This study is based on a Nissan Leaf EV. In the electrical system, the powertrain has various components including a battery pack, a battery management system, a dc/dc converter, a dc/ac inverter, a permanent magnet synchronous motor, and a control system. In the mechanical system, it consists of power transmissions, axial shaft, and vehicle wheels. Furthermore, the driving performance of the Nissan Leaf is studied through the real-world driving tests and simulation tests in MATLAB/Simulink. In the analytical model, the vehicular dynamics is evaluated against changes in the vehicle velocity and acceleration, state of charge of the battery, and the motor power. Finally, a number of EVs involved in the power dispatch is studied. The greenhouse gas emissions of the EV are analyzed according to various energy power and driving features, and compared with the conventional internal combustion engine vehicle. In this case, Nissan Leaf is a pure EV. For a given drive cycle, Nissan Leaf can reduce CO2 emissions by 70%, depending on the way electricity is generated and duty cycles

    Analysis of temperature field for a surface-mounted and interior permanent magnet synchronous motor adopting magnetic-thermal coupling method

    Get PDF
    Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor (SIPMSM), it is important to accurately calculate the temperature field distribution of SIPMSM, and a magnetic-thermal coupling method is proposed. The magnetic-thermal coupling mechanism is analyzed. The thermal network model and finite element model are built by this method, respectively. The effects of power frequency on iron losses and temperature fields are analyzed by the magnetic-thermal coupling finite element model under the condition of rated load, and the relationship between the load and temperature field is researched under the condition of the synchronous speed. In addition, the equivalent thermal network model is used to verify the magnetic-thermal coupling method. Then the temperatures of various nodes are obtained. The results show that there are advantages in both computational efficiency and accuracy for the proposed coupling method, which can be applied to other permanent magnet motors with complex structures

    Mover design and characteristics analysis of 2DoFDDIM

    Get PDF
    Two degree-of-freedom direct drive induction motor (2DoFDDIM), capable of rotary, linear and helical motion, has widespread application. A new mover structure is proposed, which is made from a hollow cylinder with copper cast in the axial slots and the circumferential slots on its surface. Then, three-dimensional finite element models of 2DoFDDIM are used to determine the performances of rotary, linear and helical motion developed by the motor. The results show that the new mover has a great improvement on the motor performances of all modes of motions compared with the initial mover. The researches on mover structure and characteristics of 2DoFDDIM present a new path of optimisation on 2DoFIM
    • …
    corecore